Strategi Perencanaan Persediaan Bahan Baku Digital Parking Sensor Dengan Metode Economic Order Quantity (EOQ) Melalui Forecasting Di PT. WJI

Ratna Suminar, Helena Sitorus, Denny Siregar, Khoirul Umam

Abstract


Era pandemi Covid-19 mempengaruhi hasil produksi dan proses kerja seluruh industri. Perusahaan ditantang untuk beradaptasi secara cepat terhadap situasi yang tidak terkendali, seperti melakukan efisiensi pengendalian pada persediaan bahan baku. Bagi perusahaan aksesoris elektronik untuk otomotif dalam kondisi demikian perlu mengkaji ulang perencanaan dan pengendalian bahan baku agar lebih optimal. Penelitian ini dilakukan dengan studi perbandingan antara metode Economic Order Quantity dan metode konvensional perusahaan. Tujuan dari perbandingan ini yaitu mendapatkan metode terbaik dalam melakukan perencanaan persediaan bahan baku Hasil dari penelitian ini menunjukkan bahwa untuk meramalkan permintaan digunakan model ARIMA terbaiknya yaitu (0,1,0) (0,1,0). Metode perencanaan persediaan bahan baku yang lebih baik adalah metode EOQ dibandingkan dengan metode konvensional. Hal in ditunjukkan dengan Total Inventory Cost (TIC)  pada metode EOQ lebih kecil dibandingkan metode konvensioanl. Metode EOQ menurunkan  Total Inventory Cost  pada metode konvensional sebesar 89%.

Keywords


EOQ; Forecasting; TIC; ROP

Full Text:

PDF

References


Adam, G., & Imaroh, T. S. (2019). Comparison of Effectiveness Inventory Control of EOQ Method with Company Method in Steel Material Fabrication Krakatau Posco. Dinasti International Journal of Education Management And Social Science, Vol.1(2), 124-137

Agarwal, S. (2014). Economic Order Quantity Model : A Review in VRSD. International Journal of Mechanical, Civil, Automobile and Production Engineering, Vol. IV(XII), 233–236.

Benhamida, F. Z., Kaddouri, O., Ouhrouche, T., Benaichouche, M., Casado-Mansilla, D., & Diego, L. (2021). Demand Forecasting Tool for Inventory Control Smart Systems. Journal of Communications Software and Systems, Vol. 17(2), 185–196.

Fithri, P., Hasan, A., & Asri, F. M. (2019). Analysis of Inventory Control by Using Economic Order Quantity Model – A Case Study in PT Semen Padang. Jurnal Optimasi Sistem Industri, Vol. 18(2), 116–124.

Goltsos, T. E., Syntetos, A. A., Glock, C. H., & Ioannou, G. (2022). Inventory – Forecasting : Mind The Gap. European Journal of Operational Research, Vol. 299(2), 397–419

John-Eke, E. C., & Eke, J. K. (2020). Strategic Planning and Crisis Management Styles in Organizations: A Review of Related Literature. Journal of Strategic Management, Vol. 5(1), 36–46.

Nemtajela, N., & Mbohwa, C. (2016). Inventory Management Models and Their Effects on Uncertain Demand. Conference: IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 978(1), 1046-1049. https://Doi.Org/10.1109/IEEM.2016.7798037

Rosihan, R. I., Paduloh, P., & Sulaeman, D. (2021). Implementation of Collaborative Planning, Forecasting, and Replenishment (CPFR) to Reduce Bullwhip Effect in PT. XYZ. Prosiding of SNAST, 2(1), 1–8.

Ruauw, E. (2011). Pengendalian Persediaan Bahan Baku (Contoh Pengendalian pada Usaha Grenda Bakery Lianli. ASE, Vol. 7(1), 1-11

Sgarbossa, F. (2021). Advances in Spare Parts Classification and Forecasting for Inventory Control IFAC Papersonline, Vol. 54(1), 982–987.

Susanto, R. (2018). Raw Material Inventory Control Analysis With Economic Order Quantity Method. IOP Conference Series: Materials Science and Engineering, International Conference on Informatics, Engineering, Science and Technology (INCITEST), 407(1) https://Doi.Org/10.1088/1757-899X/407/1/012070




DOI: https://doi.org/10.47532/jiv.v5i2.672

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Jurnal Ilmiah Vastuwidya Indexed By :

Jurnal Ilmiah Vastuwidya site and its metadata are licensed under CC BY-SA

View My Stats