ANALISIS METODE RBF-NN DAN GRNN PADA PERAMALANMATA UANG EUR/USD

Authors

  • Ayuni Harianti Program studi sistem informasi ISTNUBA Author
  • Nengah Widiangga Program Studi Manajemen logistik Politeknik Transportasi Darat Bali Author

Keywords:

EUR/USD; RBF-NN; Algoritma Genetika; GRNN; MAPE; spread; daily high; daily low

Abstract

Penelitian ini merupakan lanjutan dari penelitian sebelumnya tentang peramalan EUR/USDmenggunakan metode RBF-NN (Radial Basis Function – Neural Network) yang dioptimasi denganAlgoritma Genetika. Metode yang ditambahkan adalah GRNN (Generalized Regression NeuralNetwork). Sistem RBF-NN dapat diterapkan pada data dengan karakteristik nonlinear dan fluktuatifseperti data EUR/USD, sementara GRNN dapat bekerja dengan baik jika data training tersedia dalamjumlah banyak. Tingkat keakuratan dari peramalan ditunjukkan lewat nilai MAPE (Mean AbsolutPercentage Error).Dari hasil percobaan, metode GRNN tidak memiliki nilai MAPE yang lebih baik daripada RBF-NN baikpada data daily low maupun data daily high. Teknik pencarian algorima genetika di dekat bobot RBFNN terbukti lebih efektif daripada pendekatan fungsi GRNN dengan spread kecil pada kasus matauang EUR/USD.

References

Huda, F. A., Ridok. A., Dewi. C., 2013,

Peramalan Time Series Saham

Menggunakan Backpropagation Neural

Network Berbasis Algoritma Genetika,

Teknik Informatika PTIIIK, Universitas

Brawijaya.

Bank for International Settlements, 2014.

Triennial Central Bank Survey. Monetary

and Economic Department.

Georgios Sermpinis, Konstantinos Theofilatos,

Andreas Karathanasopoulos, Efstratios F.

Georgopoulos, Christian Dunis, 2012.

Forecasting Foreign Exchange Rates with

Adaptive Neural Networks Using RadialBasis Functions and Particle Swarm

Optimization. European Journal Operation

Research 225, 528–540.

doi:http://dx.doi.org/10.1016/j.ejor.2012.10.0

20

Zuliana, S.U., 2012. Penerapan Global RidgeRegression Pada Peramalan Data Time

Series Non Linear Studi Kasus : Pemodelan

Nilai Tukar US Dollar Terhadap Rupiah.

Kaunia VIII

Warda, S. M., Irhamni F., 2012. Analisa Data

Antaran Pos Express Menggunakan Metode

Radial Basis Function Neural Network (RBFNN) Study PT. POS Indonesia (Persero)

Surabaya. Universitas Trunojoyo.

Maillard, E.P., Gueriot, D., 1997. RBF neural

network, basis functions and genetic

algorithm, in: International Conference on

Neural Networks,1997. Presented at the

International Conference on Neural

Networks,1997, pp. 2187–2192 vol.4.

doi:10.1109/ICNN.1997.614247

Wiharto, Y.S. Palgunadi, Muh Aziz Nugroho,

2013. Analisis Penggunaan Algoritma

Genetika Untuk Perbaikan Jaringan Syaraf

Tiruan Radial Basis Function. Seminar

Nasional Teknologi Informasi Dan

Komunikasi 2013. SENTIKA 2013.

Gautama, N.W., Dharma, A., Sudarma, M., 2016.

Analisis Metode Rbf-Nn Dengan Optimasi

Algoritma Genetika Pada Peramalan Mata

Uang EUR/USD. Majalah Ilmiah Teknologi

Elektro 15, 107–114.

Specht, D.F., 1991. A General Regression Neural

Network. IEEE Transactions on Neural

Network. 2, 568–576. doi:10.1109/72.97934

Heriyanto, D. N., Rachman, F.H., Satoto, B.D.,

2013. Penerapan Metode Radial Basis

Function Network dengan K-Means Cluster

untuk Peramalan Kebutuhan Straw. Jurnal

Sarjana Teknik Informatika. Universitas

Trunojoyo Madura 1, 1–10.

Andreasson, N., Evgrafov, A., Patriksson, M.,

2006. Introduction to Continuous

Optimization: Foundations and Fundamental

Algorithms, 1st edition. Studentlitteratur AB.

Dharma, A., Robandi, I., Purnomo, M.H., 2011.

Application of Interval Type-2 Fuzzy Logic

System in Short Term Load Forecasting on

Special Days. IPTEK Journal for Technology

and Science 22. doi:10.12962/

j20882033.v22i2.65

Gang Sun, Steven J Hoff, Brian C Zelle, Minda A

Smith, 2008. Development and Comparison

of Backpropagation and Generalized

Regression Neural Network Models to

Predict Diurnal and Seasonal Gas and PM10

Concentrations and Emissions from Swine

Buildings. American Society of Agricultural

and Biological Engineers. doi:10.13031/2013.25180

Yazıcı, G., Polat, Ö., Yıldırım, T., 2006. Genetic

Optimizations for Radial Basis Function and

General Regression Neural Networks, in:

Gelbukh, A., Reyes-Garcia, C.A. (Eds.),

MICAI 2006: Advances in Artificial

Intelligence, Lecture Notes in Computer

Science. Presented at the Mexican

International Conference on Artificial

Intelligence, Springer Berlin Heidelberg, pp. 348–356.

Downloads

Published

2026-01-05