ANALISIS METODE RBF-NN DAN GRNN PADA PERAMALANMATA UANG EUR/USD
Keywords:
EUR/USD; RBF-NN; Algoritma Genetika; GRNN; MAPE; spread; daily high; daily lowAbstract
Penelitian ini merupakan lanjutan dari penelitian sebelumnya tentang peramalan EUR/USDmenggunakan metode RBF-NN (Radial Basis Function – Neural Network) yang dioptimasi denganAlgoritma Genetika. Metode yang ditambahkan adalah GRNN (Generalized Regression NeuralNetwork). Sistem RBF-NN dapat diterapkan pada data dengan karakteristik nonlinear dan fluktuatifseperti data EUR/USD, sementara GRNN dapat bekerja dengan baik jika data training tersedia dalamjumlah banyak. Tingkat keakuratan dari peramalan ditunjukkan lewat nilai MAPE (Mean AbsolutPercentage Error).Dari hasil percobaan, metode GRNN tidak memiliki nilai MAPE yang lebih baik daripada RBF-NN baikpada data daily low maupun data daily high. Teknik pencarian algorima genetika di dekat bobot RBFNN terbukti lebih efektif daripada pendekatan fungsi GRNN dengan spread kecil pada kasus matauang EUR/USD.
References
Huda, F. A., Ridok. A., Dewi. C., 2013,
Peramalan Time Series Saham
Menggunakan Backpropagation Neural
Network Berbasis Algoritma Genetika,
Teknik Informatika PTIIIK, Universitas
Brawijaya.
Bank for International Settlements, 2014.
Triennial Central Bank Survey. Monetary
and Economic Department.
Georgios Sermpinis, Konstantinos Theofilatos,
Andreas Karathanasopoulos, Efstratios F.
Georgopoulos, Christian Dunis, 2012.
Forecasting Foreign Exchange Rates with
Adaptive Neural Networks Using RadialBasis Functions and Particle Swarm
Optimization. European Journal Operation
Research 225, 528–540.
doi:http://dx.doi.org/10.1016/j.ejor.2012.10.0
20
Zuliana, S.U., 2012. Penerapan Global RidgeRegression Pada Peramalan Data Time
Series Non Linear Studi Kasus : Pemodelan
Nilai Tukar US Dollar Terhadap Rupiah.
Kaunia VIII
Warda, S. M., Irhamni F., 2012. Analisa Data
Antaran Pos Express Menggunakan Metode
Radial Basis Function Neural Network (RBFNN) Study PT. POS Indonesia (Persero)
Surabaya. Universitas Trunojoyo.
Maillard, E.P., Gueriot, D., 1997. RBF neural
network, basis functions and genetic
algorithm, in: International Conference on
Neural Networks,1997. Presented at the
International Conference on Neural
Networks,1997, pp. 2187–2192 vol.4.
doi:10.1109/ICNN.1997.614247
Wiharto, Y.S. Palgunadi, Muh Aziz Nugroho,
2013. Analisis Penggunaan Algoritma
Genetika Untuk Perbaikan Jaringan Syaraf
Tiruan Radial Basis Function. Seminar
Nasional Teknologi Informasi Dan
Komunikasi 2013. SENTIKA 2013.
Gautama, N.W., Dharma, A., Sudarma, M., 2016.
Analisis Metode Rbf-Nn Dengan Optimasi
Algoritma Genetika Pada Peramalan Mata
Uang EUR/USD. Majalah Ilmiah Teknologi
Elektro 15, 107–114.
Specht, D.F., 1991. A General Regression Neural
Network. IEEE Transactions on Neural
Network. 2, 568–576. doi:10.1109/72.97934
Heriyanto, D. N., Rachman, F.H., Satoto, B.D.,
2013. Penerapan Metode Radial Basis
Function Network dengan K-Means Cluster
untuk Peramalan Kebutuhan Straw. Jurnal
Sarjana Teknik Informatika. Universitas
Trunojoyo Madura 1, 1–10.
Andreasson, N., Evgrafov, A., Patriksson, M.,
2006. Introduction to Continuous
Optimization: Foundations and Fundamental
Algorithms, 1st edition. Studentlitteratur AB.
Dharma, A., Robandi, I., Purnomo, M.H., 2011.
Application of Interval Type-2 Fuzzy Logic
System in Short Term Load Forecasting on
Special Days. IPTEK Journal for Technology
and Science 22. doi:10.12962/
j20882033.v22i2.65
Gang Sun, Steven J Hoff, Brian C Zelle, Minda A
Smith, 2008. Development and Comparison
of Backpropagation and Generalized
Regression Neural Network Models to
Predict Diurnal and Seasonal Gas and PM10
Concentrations and Emissions from Swine
Buildings. American Society of Agricultural
and Biological Engineers. doi:10.13031/2013.25180
Yazıcı, G., Polat, Ö., Yıldırım, T., 2006. Genetic
Optimizations for Radial Basis Function and
General Regression Neural Networks, in:
Gelbukh, A., Reyes-Garcia, C.A. (Eds.),
MICAI 2006: Advances in Artificial
Intelligence, Lecture Notes in Computer
Science. Presented at the Mexican
International Conference on Artificial
Intelligence, Springer Berlin Heidelberg, pp. 348–356.
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Ayuni Harianti, Nengah Widiangga (Author)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.




